Contrasting Responses to Harvesting and Environmental Drivers of Fast and Slow Life History Species
نویسندگان
چکیده
According to their main life history traits, organisms can be arranged in a continuum from fast (species with small body size, short lifespan and high fecundity) to slow (species with opposite characteristics). Life history determines the responses of organisms to natural and anthropogenic factors, as slow species are expected to be more sensitive than fast species to perturbations. Owing to their contrasting traits, cephalopods and elasmobranchs are typical examples of fast and slow strategies, respectively. We investigated the responses of these two contrasting strategies to fishing exploitation and environmental conditions (temperature, productivity and depth) using generalized additive models. Our results confirmed the foreseen contrasting responses of cephalopods and elasmobranchs to natural (environment) and anthropogenic (harvesting) influences. Even though a priori foreseen, we did expect neither the clear-cut differential responses between groups nor the homogeneous sensitivity to the same factors within the two taxonomic groups. Apart from depth, which affected both groups equally, cephalopods and elasmobranchs were exclusively affected by environmental conditions and fishing exploitation, respectively. Owing to its short, annual cycle, cephalopods do not have overlapping generations and consequently lack the buffering effects conferred by different age classes observed in multi-aged species such as elasmobranchs. We suggest that cephalopods are sensitive to short-term perturbations, such as seasonal environmental changes, because they lack this buffering effect but they are in turn not influenced by continuous, long-term moderate disturbances such as fishing because of its high population growth and turnover. The contrary would apply to elasmobranchs, whose multi-aged population structure would buffer the seasonal environmental effects, but they would display strong responses to uninterrupted harvesting due to its low population resilience. Besides providing empirical evidence to the theoretically predicted contrasting responses of cephalopods and elasmobranchs to disturbances, our results are useful for the sustainable exploitation of these resources.
منابع مشابه
Differential reproductive responses to stress reveal the role of life-history strategies within a species.
Life-history strategies describe that 'slow'- in contrast to 'fast'-living species allocate resources cautiously towards reproduction to enhance survival. Recent evidence suggests that variation in strategies exists not only among species but also among populations of the same species. Here, we examined the effect of experimentally induced stress on resource allocation of breeding seabirds in t...
متن کاملLife history variation in Barents Sea fish: implications for sensitivity to fishing in a changing environment
Under exploitation and environmental change, it is essential to assess the sensitivity and vulnerability of marine ecosystems to such stress. A species' response to stress depends on its life history. Sensitivity to harvesting is related to the life history "fast-slow" continuum, where "slow" species (i.e., large, long lived, and late maturing) are expected to be more sensitive to fishing than ...
متن کاملComplex interplay of body condition, life history, and prevailing environment shapes immune defenses of garter snakes in the wild.
The immunocompetence "pace-of-life" hypothesis proposes that fast-living organisms should invest more in innate immune defenses and less in adaptive defenses compared to slow-living ones. We found some support for this hypothesis in two life-history ecotypes of the snake Thamnophis elegans; fast-living individuals show higher levels of innate immunity compared to slow-living ones. Here, we opti...
متن کاملStrength of density feedback in census data increases from slow to fast life histories
Life-history theory predicts an increasing rate of population growth among species arranged along a continuum from slow to fast life histories. We examine the effects of this continuum on density-feedback strength estimated using long-term census data from >700 vertebrates, invertebrates, and plants. Four life-history traits (Age at first reproduction, Body size, Fertility, Longevity) were rela...
متن کاملCharacterizing Tropical Tree Species Growth Strategies: Learning from Inter-Individual Variability and Scale Invariance
Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We...
متن کامل